Graphene mechanics: I. Efficient first principles based Morse potential.

نویسندگان

  • Bogdan I Costescu
  • Ilona B Baldus
  • Frauke Gräter
چکیده

We present a computationally efficient pairwise potential for use in molecular dynamics simulations of large graphene or carbon nanotube systems, in particular, for those under mechanical deformation, and also for mixed systems including biomolecules. Based on the Morse potential, it is only slightly more complex and computationally expensive than a harmonic bond potential, allowing such large or mixed simulations to reach experimentally relevant time scales. By fitting to data obtained from quantum mechanics (QM) calculations to represent bond breaking in graphene patches, we obtain a dissociation energy of 805 kJ mol(-1) which reflects the steepness of the QM potential up to the inflection point. A distinctive feature of our potential is its truncation at the inflection point, allowing a realistic treatment of ruptured C-C bonds without relying on a bond order model. The results obtained from equilibrium MD simulations using our potential compare favorably with results obtained from experiments and from similar simulations with more complex and computationally expensive potentials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of hydrogenated graphene nanoripples by strain engineering and directed surface self-assembly

We propose a class of semiconducting graphene-based nanostructures: hydrogenated graphene nanoripples (HGNRs), based on continuum-mechanics analysis and first-principles calculations. They are formed via a twostep combinatorial approach: first by strain-engineered pattern formation of graphene nanoripples, followed by a curvature-directed self-assembly of H adsorption. It offers a high level of...

متن کامل

Stress Concentration Factor of Single-Layered Graphene Sheets Containing Elliptical Vacancies

In the present study, potential of finite element based molecular structural mechanics (MSM) for evaluating stress concentration factor of single-layered graphene sheets (SLGSs) with elliptical vacancies is successfully addressed. The MSM approach mimics the interatomic forces of the nanostructure by defining an equivalent frame structure containing beam elements. To obtain the mechanical and c...

متن کامل

Nonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics

The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...

متن کامل

Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics

We analyze electronic and phononic quantum transport in zigzag or chiral graphene nanoribbons (GNRs) perforated with an array of nanopores. Since local charge current profiles in these GNRs are peaked around their edges, drilling nanopores in their interior does not affect edge charge currents while drastically reducing the phonon heat current in sufficiently long wires. The combination of thes...

متن کامل

Interface structure and mechanics between graphene and metal substrates: a first-principles study.

Graphene is a fascinating material not only for technological applications, but also as a test bed for fundamental insights into condensed matter physics due to its unique two-dimensional structure. One of the most intriguing issues is the understanding of the properties of graphene and various substrate materials. In particular, the interfaces between graphene and metal substrates are of criti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 24  شماره 

صفحات  -

تاریخ انتشار 2014